TABLE 10-07 ENTRANCE LOSS COEFFICIENTS

This table shows values of the coefficient K_i to apply to the velocity head $V^2/2g$ to determine the loss of head at the entrance of a structure such as a culvert or conduit, operating full or partly full with control at the outlet.

Entrance head loss $H_i = K_i V^2/2g$

	TYPE OF STRUCTURE AND DESIGN OF ENTRANCE	COEFFICIENT, K _i
Α.	Concrete Pipe	
	Projecting from fill, socket end (groove-end)	0.2
	Projecting from fill, square cut end	0.5
	Headwall or headwall and wingwalls	
	Socket end of pipe (groove-end)	0.2
	Square-edge	0.5
	Rounded (radius = D/12)	0.2
	Mitered to conform to fill slope	0.7
	End-section conforming to fill slope *	0.5
	Beveled edges, 33.7° or 45° bevels	0.2
	Side or slope-tapered inlet	0.2
В.	CMP or CMPA	
	Projecting from fill (no headwalls)	0.9
	Headwall or headwall and wingwalls	
	Square-edge	0.5
	Mitered to conform to fill slope	0.7
	End-section conforming to fill slope *	0.5
C.	Concrete Box	
	Headwall parallel to embankment (no wingwalls)	
	Square-edged on 3 edges	0.5
	Rounded on 3 edges to radius of 1/12 barrel dimension,	
	or beveled edges on 3 sides	0.2
	Wingwalls at 30 - 75 degrees to barrel	
	Square-edged at crown	0.4
	Crown edge rounded to radius of 1/12 barrel dimension,	
	or beveled top edge	0.2
	Wingwalls at 10 - 25 degrees to barrel	
	Square-edged at crown	0.5
	Wingwalls parallel (extension of sides)	
	Square-edged at crown	0.7

*NOTE: "End sections conforming to fill slope," made of either metal or concrete, are the sections commonly available from manufacturers. From limited hydraulic tests they are equivalent in operation to a headwall in both inlet and outlet control.